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Unsteady viscous flow in a curved pipe 

By W. H. LYNE 
Department of Mathematics, Imperial College, London S.W. 7 t  

(Received 25 January 1970 and in revised form 20 July 1970) 

The flow in a pipe of circular cross-section which is coiled in a circle is studied, the 
pressure gradient along the pipe varying sinusoidally in time with frequency w .  
The radius of the pipe a is assumed small in relation to the radius of curvature of 
its axis R. Of special interest is the secondary flow generated by centrifugal 
effects in the plane of the cross-section of the pipe, and an asymptotic theory is 
developed for small values of the parameter /3 = (2v/wu2)t ,  where v is the kine- 
matic viscosity of the fluid. The secondary flow is found to be governed by a 
Reynolds number R, = W2a/Rwv ,  where w is a typical velocity along the axis of 
the pipe, and asymptotic theories are developed for both small and large values 
of this parameter. For sufficiently small values of /l it is found that the secondary 
flow in the interior of the pipe is in the opposite sense to that predicted for a 
steady pressure gradient, and this is verified qualitatively by an experiment 
described at  the end of the paper. 

1. Introduction 
In this paper we study the flow of an incompressible viscous fluid through a 

pipe of circular cross-section, which is coiled in a circle. Of special interest is the 
secondary flow, induced in the plane of the cross-section of the pipe by centrifugal 
effects. 

The steady problem of this kind was first analyzed by Dean (1927, 1928), who 
found that the motion depended on a parameter K ,  equal to 2Re2alR, Re being a 
Reynolds number for flow along the pipe, a the radius of the pipe and R the radius 
of curvature of its axis. The analysis employed by Dean was restricted to small 
values of K ,  but recently this has been extended numerically t o  moderately 
large values of K by McConalogue & Srivastava (1968);  earlier Barua (1963) had 
developed an asymptotic boundary-layer theory for very large values of this 
parameter. 

The knowledge of steady flow through a curved pipe is thus quite extensive. 
On the other hand, time-dependent viscous flows in a curved pipe have not been 
studied, at least to the author’s knowledge. Thus, in this paper, an attempt is 
made to study the effects of unsteadiness of the motion. 

In  order to simplify the problem, the radius of curvature of the pipe is assumed 
large in relation. to its own radius, and the pressure gradient applied along the pipe 
is assumed to be sinusoidal in time with zero mean. This may be realized by the 
insertion of a pump into the circle in which the pipe is bent, or, alternatively, 
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the problem may be reformulated so that the pipe itself performs torsional 
oscillations; for practical purposes, however, the pipe may be regarded as being 
bent into a spiral of small pitch, with a pump placed at one of its ends. In 
$ 2  the equations of motion are derived and the flow, being unsteady, is seen to 
depend on two parameters, which are conveniently taken as 

here is a typical velocity along the pipe, w is the frequency and v the kinematic 
viscosity of the fluid. The parameter e2 may be recognized as the ratio of the 
square of the particle displacement amplitude of the motion along the pipe, to 
the product of the radius of the pipe and its radius of curvature. The parameter 
e2 is taken to be small throughout this paper and this allows the equations to be 
simplified, thus making the problem more amenable to analysis. It will be seen 
later that R, plays the role of a conventional Reynolds number for the secondary 
flow. This choice of parameters was made to allow direct comparison with the 
analogous two-dimensional problem of flow induced by a body oscillating in an 
unbounded viscous fluid, as described by Riley (1967) in a review article. Another 
parameter of importance in the analysis is 

p2 = 2v/wa2 = 2e2/Rs (1.2) 

and this also is assumed small. Clearly /3 represents the ratio of the Stokes layer 
thickness, say (2w/w)*, to the radius of the pipe. The smallness of p implies that, 
for the flow down the pipe, viscous effects are confined to a thin layer on the wall, 
while the main part of the flow is inviscid. 

In  5 3 a solution is developed by the use of two matched asymptotic expansions, 
one expansion being valid near to the wall of the pipe where a Stokes shear-wave 
layer exists and the other expansion being valid in the region away from the wall, 
in the interior of the pipe. The expansion parameter in each case is p, and a 
common region of validity is assumed in which the matching takes place. I n  $4 
these expansions have been taken to O(p)  in both regions where R, < O ( l ) ,  but 
when R, $ O( 1) a solution to only O(po) has been attempted for the interior, and is 
described in $ 5. 

In the latter case it is found that a secondary boundary layer of thickness 
O(aR;*) is formed at  the edge of the Stokes layer, in which the velocity of the 
secondary motion is adjusted to the value dictated by the flow in the core of the 
pipe. This core is inviscid, and differs from the interior in that the latter contains 
the secondary boundary layer as well as the core. 

As the governing equations for the secondary motion in the interior are steady 
to first order in p, and the streamlines of the motion are closed, the secondary 
flow in the core of the pipe must, to first order, have uniform vorticity (see 
Batchelor 1956). Because of symmetry about that diameter lying in the plane in 
which the pipe is coiled, the vorticity immediately above this diameter must ba 
equal in magnitude, but of opposite sign, to that immediately below it. Harper 
(1963) has shown that this leads to the formation of a free boundary layer of 
thickness O(aRg4) along this diameter. The equations of these boundary layers 
are then linearized by assuming the velocities of the secondary motion in the 
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layers are small perturbations to the velocities of the motion in the core. These 
linearized equations are then solved to give an integral equation for the velocity 
profile at  some station, the strength of the vortex in the core appearing as an 
eigenvalue. This equation is solved numerically, and the eigenvalue found. 

In $ 6  the results are discussed, the most striking feature being that, at  least 
for sufficiently small values of the parameter p, the secondary flow in the interior 
of the pipe is in the opposite sense to that predicted for steady flow along the 
pipe. Thus, whereas the intuitive idea of ‘outwards centrifuging’ is valid for 
steady flow, it is not valid in the unsteady flow that we discuss; rather the 
apparent ‘centrifuging’ is negative and is therefore directed inwards! This has 
been verified experimentally using the apparatus described in § 7 which was 
kindly made available by the Physiological Flow Studies Unit a t  Imperial 
College. 

\ /  \ a / 

FIGURE 1. The co-ordinate system. 

2. The equations of motion 
Let us consider incompressible viscous flow in a pipe of circular cross-section 

and of radius a, the pipe itself being coiled in a circle of radius R about the axis Oz 
(figure 1). Distance down the pipe is measured by RB, where 6’ is the angle which 
an axial plane (containing 0 2 )  makes with some fixed axial plane. Within the 
pipe cross-section, polar co-ordinates r,  $ are used. Moreover, the velocity of 
components corresponding to (r ,  $, 8 )  are (u, v, w), which are assumed to be 
independent of 8; in addition p denotes pressure, p the density, Y the kinematic 
viscosity and t the time. 

The steady Navier-Stokes equations in these co-ordinates were given by 
Dean (1927, 1928), the unsteady form following directly as 

au v au v 2  W ~ C O S $  -+u-+----- 
at ar r a$ r R+rcos$ 



W .  H .  Lyne 16 

and 

The equation of continuity is 

(2.4) 
au u ucos$ 1 av usin$ -+-+ 
ar r R+rcos$ r a$ R+rcos$= ’’ 

We now impose a single sinusoidal pressure gradient along the pipe 

- a(p1p)iae = R W ~  COB ot, (2 .5 )  
where w has the dimensions of velocity and o is the angular frequency. We may 
fist note that the  exact solution to (2.1), (2.2)) (2.3) and (2.4), in the absence of 
viscosity, is the potential flow solution 

R w sin wt 
R + r  cos $’ W =  

There are no components of secondary flow in the plane of the cross-section, 
there being a balance between the centrifugal force exerted by the flow along the 
pipe, and the pressure gradient in that plane. When viscosity is present, however, 
we may expect a Stokes shear-wave layer of thickness O(v/w)3 to be formed at, the 
wall of the pipe, and this is thin when w d / v  is large. Within this layer, the value of 
w will decay to zero as the wall of the pipe is approached, and thus there will no 
longer be a balance between the centrifugal force and the pressure gradient, 
because the latter is essentially unchanged. Secondary flow will then be generated 
within this layer and a consideration of the viscous and centrifugal terms in ( 2 . 2 )  
indica6e that its magnitude is O( r2/Rw). 

We thcrefore introduce the following non-dimensional notation : 

(2.7) I a r U a = - .  r ’ = p  w’=r ’ 
R’ a’ W ’  u = -  W2/Rw’ 

V 

W2/Rw’ 
( p  + pR8 w cos ot) v’ = Y r = wt, p’= 

remembering that, in due course, r’ and u’ will need to be suitably scaled within 
the Stokes layer. 

The momentum equations (2.1), (2.2) and (2.3) now become 

w’2 cos $ 



Unsteady viscous flow in a curved pipe 17 

1 
1 + Sr' cos $ 

- - 

The equation of continuity becomes 

au' U' U ' ~ C O S $  1 av' v'6sin$ -+,+ +- -- (2.11) 
art r 1+Jr'cos$ r' a$ 1+sr'cos$ = O. 

In  order to simplify the equations and allow some progress to be made, 6 is 
taken to  be very small and all terms of O(6) are neglected. Equation (2.11) now 

aui ui 1 avi becomes 
-+-+-- = 0. (2.12) art r' r' a$ 

We satisfy (2.12) by introducing the non-dimensional stream function x for 

u'=-- 1 ax ax (2.13) 

flow in the cross-section, defined as follows 

' 
r ' W '  art ' 

= - -  

Eliminating the pressure between (2.8) and (2.9) andneglecting terms of O(S), we 
obtain the vorticity equation for flow in the cross-section : 

Equation (2.10) becomes, neglecting terms of O(6), 

(2.16) 

The boundary conditions for (2.14) and (2.16) are 

x = ax/ar' = w' = 0 at r' = 1 (2.17) 

and we shall also require that the solution shall be non-singular within the pipe. 

3. The limit /3 -+ 0 

In  this section we shall seek solutions to (2.14) and (2.16) which are asymp- 
totic to the exact solutions in the limit ,8+- 0, R, fixed; in later sections we shall 
study the consequences of taking the further limits R,+O and R,+co. Only 
periodic dependence on T will be allowed. 

2 F L M  45 
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The primes will now be dropped from the dimensionless quantities defined in 
( 2 . 7 )  for reasons of simplicity, and all variables are now dimensionless unless 
stated otherwise. 

In  the Stokes layer we have seen that the relevant length scale is (v/w)t. We 
therefore introduce the following scaled variables for this region, 

7 = p ( 1  -Y), x = P-lx, (3.1) 

w = ~ o ~ ~ ~ r 7 $ ~ ~ s ~ + P ~ 1 ~ ~ , r , 9 ; ~ s ~ + P 2 ~ 2 ~ ~ , r ,  9;Rs)+ - - * ,  ( 3 4  

x = X0(~,~l,$r;Rs)+PX1(~,r,$;~~S)+P~X2(~,r,$;RS)+'..7 (3.3) 

wi = xi = axi/ar = 0, 7 = o (i = 0,1 ,2 ,  ...). (3.4) 

w =  sin^, (3.5) 

x = ~ 0 ~ r 7 r 7 $ ; ~ ~ ~ + ~ x 1 ~ ~ ~ r , $ ; R s ) + ~ 2 ~ 2 ( r , r , $ ; ~ s ) + . . .  (3.6) 

and seek solutions to (2.14) and (2.16) for this region of the form 

subject to the boundary conditions 

In the interior, away from the Stokes layer, we look for solutions of the form 

and require that these should match with the solutions in the Stokes layer. 
Equation (3.5) is a direct consequence of (2.16) if we note that no steady part of 

w may exist as there is no preferential direction for the motion; it can be seen 
to be just the potential flow solution. 

Substituting (3.5), and (3.6) into (2.14) and (2.16), and equating like powers of 
P, we have 

a 

a 

-v2xo a7 = 0, (3-7) 

-v2x1 a7 = 0, (3.8) 

Equation (3.7) implies (3.10) 

and hence xo = xdu)(~, $, 7; Rs) + x6S)(r7 $; .Rs), (3.11) 

where v2xp = 0, (3.12) 

V2Xds' = go@., $; R,). (3.13) 

xhu) contains terms proportional to einT(n = 1 to .of and has zero time average; 
xp) is independent of r. Similarly 

x i  = xP)(r, $7 7; Rs) i- xP)(r, $; Rs), (3.14) 

where 02x1") = 0, (3.15) 

V 2 x P  = 91(r, $; 4). ( 3.. 16) 
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Substituting (3.1), (3.2) and (3.3) into (2.14) and (2.16) and equating like 
powers of p ,  we arrive at  the following equations for w, and Xo: 

(3.17) 

(3.18) 

The solution of (3.17) satisfying (3.4) and matching with (3.5) is easily seen to be 

w, = sin r - e-1 sin (7 - 7). (3.19) 

Substituting (3.19) into (3.18) and solving, we find that the general solution to 
(3.18), which has period 277 in 7, may be written as 

X, = { - +e-Q - $42 e-7 cos ( - y + $77) - 2c42 e--29 cos (27 - 27 + &T) 

-&91/2eqcos (27-y++7r))sin$+a Dn($)e-d\/"(l+i)~+inT 

+ B($) r3 + C(@)rZ +P(7,@)r + G(7, $1, 

m 

n=l 

(3.20) 

where terms of exponential growth have been excluded, and 9 means 'real part 
of'. This must match with the solution in the interior, which, written in the 
variables of the Stokes layer, and using (3.11) and (3.14), becomes 

x = P-"xd"'1,=1- r[~XdU'/a4,=1 + P-l[xd"'I,=l 
-7[ax$'/a~l,=,+ [xi"'1,=1+ [Xi"'],=lf O(P).  (3.21) 

Matching with (3.20) we see that B($) = C($) = 0 and this ensures that the 
tangential velocity of the flow is bounded at  the edge of the Stokes layer. This, 
however, is implicit in our scalings (2.7) which assume that the secondary flow's 
velocities in the interior of the pipe are of the same order as those in the Stokes 
layer. If we were to rescale x we could attempt to match the terms By3 or Cy2 and 
this would be equivalent to matching the derivative of the stress or the stress 
itself. However, detailed arguments demonstrate this would again lead to the 
conclusion that B and C are identically zero, and hence to the scale of x used here 
(see Lyne 1970). 

Therefore xdU'(1, $, 7; %.I+ xd"'(l,$; Rs) = 0 (3.22) 

x p ) = O  on r =  1. (3.23) and hence 

The only regular solution to (3.12) with this boundary condition is 

xd"'= 0 (3.24) 

and hence F(7, $) is a function of $ only (F($)).  
From the boundary conditions (3.4) we can deduce 

D~(@) = o (n + 2); ~ ~ ( $ 1  = gsin$e*in, 

F($)  = -asin$; 
I (3.25) 

G(T,$)  = [ ~ ( 9 ~ 2 - 1 0 ) c o s ( 2 r + & r ) + # ] s i n $ . ~  
2-2 
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Hence we have finally 

x, = { - $ q + # - $ e - W - l  4 2 e  - 11~0s ( - 7 + in) + $-e-d2v cos (27 - 4291 + in) 
- ~ ~ ~ 2 e - 2 ~ c o s ( 2 7 - 2 ~ + ~ n ) - ~ ~ 2 e - ~ c o s ( 2 7 - ~ + + n )  

+ &( 9 4 2  - 10) cos (27 + in)} sin $. (3.26) 

Furthermore, as only periodic dependence on 7 is allowed, and (3.24) implies 
xo is independent of 7, equation (3.9) yields the two equations 

(3.27) 
a -vzx2 = 0, 
a7 

(3.28) 

We see, therefore, that xo satisfies the two-dimensional steady Navier-Stokes 
equation, with R, playing the role of a conventional Reynolds number. From the 
matching condition (3.21), we see that the boundary conditions on xo are 

xo = 0, axo/ar= $sin$ on r = 1. (3.29) 

Having found X, and w, in the Stokes layer and having derived equations and 
boundary conditions sufficient to determine xo in the interior, we turn our 
attention to x1 and w,. As a first step we note that (3.21) implies that the boundary 
condition on xp) is 

~ ~ ) = & ( 9 ~ 2 - 1 0 ) c o s ( 2 7 + & r ) s i n @  on r =  1 (3.30) 

and the only regular solution of (3.15) which satisfies this boundary condition is 

xp) = &(942- lO)rcos(27++n)sin@. (3.31) 

The equation of O(p3) in the interior yields the two equations 

In the Stokes layer the equations for w1 and X, are 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

and the solution of (3.34) satisfying (3.4) and matching with (3.5) is easily found 

w1 = - +7 e-?) sin (7 - 7). (3.36) to be 

Thus, since X, and w, are already determined, the inhomogeneous terms in (3.35) 
are known and we can find the general solution for XI. However, when we come to  
determine the unknown constants using the matching equation (3.21) (extended 
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to include O(p)  terms) we see that the coefficients of v2 in the solution X ,  must 
equal + [ a 2 ~ , / a r 2 ] , = ,  and this is unknown, since we have not yet tackled the 
non-linear problem for xo presented by (3.28) and (3.29). X, has a form similar to 
X,, but is much more lengthy and will not be given here (see Lyne 1970). Its most 
important feature, however, is its behaviour as 7 -+ co as this determines matching 
conditions t o  be imposed on ~ $ 1 :  

]im X, = {+7--3---L , (94.2 - 10) 7 COS (27 $. @) 
9+m 

+ gT( 1642 - 21) cos 27) sin y!f + A($)r2.  (3.37) 

We see, from (3.21)) that the matching conditions for X I S ) ,  determined from X ,  
and X,, are 

xp) = 6. 8 sin $y - axp)/ar = + sin $ on r = 1. (3.38) 

Thus we have again derived equations and boundary conditions sufficient to 
determine x1 in the interior, and we could consider in like fashion the terms of 
O(p2).  This is not pursued here (see Lyne 1970), and instead we proceed with the 
solution in the interior of the pipe. In order to progress with this it is necessary to 
consider the limiting forms of the solution when R,+ 0 or R, -f co, and this will be 
our concern in the next two sections. 

4. The limit R,+O 

further limit R,-+O. 
We now look for a solution that is asymptotic to the exact solution in the 

We therefore try a solution to (3.28) of the form 

x o  = xoo(r, $) + R,Xol(r, $) +R3!02(r, @) + * * a  7 (4.1) 

subject to the matching conditions (3.29), which are now written as 

xoi = 0 (i 3 0 ) ;  axoo/ar = $sin$-, axoi/ar = 0 (i 2 1) on r = 1.  (4.2) 

Substituting (4.1) into (3.28) and equating like powers of R,, we find as our 
equation for xoo 

The solution of (4.3) which is regular and satisfies (4.2) is found to be 

(4.3) V4Xo0 = 0. 

xoo = -&r(l-r2)sin@. 
The equation for xol is 

1 a ( x 0 0 ,  V2xoo) 
W?y!f) 

V4XOl = -; 
whose solution subject to (4.2) is 

xol = - (r2/3072) (1 - r2)2sin 2 9 ,  

Similarily xo2 is found to be 

1 
{$r(l- T ~ ) ~  (2 - 7r2 + 4r4) sin @ +r3( 1 - r2)3sin 3y!f} (4.7) 

'02 = - 1,474,560 
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and, matching, we can see that A($) in the expression for X, (3.37) is 

A($)  = #sin$--sin2$+- RS R," sin$+O(R,3). 
768 737,280 (4.8) 

We solve (3.33) in a similar manner for xp), and this is found to be 

r 9 
(1 9 - 9r2) sin $ + 3072 Rsr2( 1 - r2)2 sin 2$ xi"' = 3 

R," 1 
3072 1920 

+ ~ (~ (154r - 597r3 + 840r5 - 505~'  + 108r9) sin $ 

1 
320 

+-( -r3-7r5+17r7-9r9)sin 3$ 

5. The limit R,+m 
We now seek a solution to (3.28) which is asymptotic to the exact solution 

for xo in the limit Rs+co, and subject to the matching requirements (3.29). 
The problem now under consideration is equivalent to that of two-dimensional 

flow inside a circle whose 'wall 'has a tangential velocity v, = - 0-25( W2/Ro) sin$-. 
A thin boundary layer of thickness O(aR;g) will be formed at  the wall within 
which, assuming that the layer does not separate, the velocity of the flow is 
adjusted to that dictated by the flow in the core of the circle. We postulate that 
in the limit R,+m no streamlines of the motion in the core enter or leave the 
boundary layer, thereby causing the flow to have uniform vorticity (see Batchelor 
1956). We then solve for the flow in the boundary layer by replacing the non- 
linear equation by a tractable linear equation, and this gives rise to a velocity 
distribution at the edge of the core flow whichis, for the most part, quite close to a 
sinusoidal distribution (see figure 3). This gives an aposteriori justification for the 
assumption of the boundary layer not separating, and good grounds on which to 
argue for the picture of the flow given in figure 2. 

The shaded regions within the periphery of the circle denote boundary layers 
of thickness O(aRL4). A boundary layer is also formed along the line of symmetry 
+ = 0, n because, when the fluid in the boundary layer a t  the wall, having started 
at $ = n, reaches $ = 0, it  meets boundary-layer fluid from the other semicircle. 
The two boundary layers impact, and must continue along the line of symmetry. 
They retain their boundary-layer character because, although the velocitg is 
continuous across the line of symmetry, the vorticity is not, and Harper (1963) 
has shown that this itself leads to the formation of a boundary layer of thickness 
O(aR;B) in which to smooth out the discontinuity. The two unshaded regions 
within the circle comprise the core, and in them the flow has uniform vorticity. 
The vorticity in one core region has the same magnitude as, but the opposite 
sign to, the vorticity in the other core region. 

We first solve for the flow in the core region of the upper semicircle in figure 2 .  
If we refer to flow in the core by an overbar, the governing equation for zo in the 
core is V$, = -5,  
where is the non-dimensional vorticity, which we may expect to be negative 
from the velocity distribution on the wall of the circle. The boundary condition 
on xo is zo = 0 on r = 1, or $ = 0, n. (3.2) 
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The solution of (5.1) subject to (5.2) which is regular everywhere within the 
circle is found to be 

x,, = & ([I -; (rz+ $) cos 2$] tan-1 (-) 2r sin $ 

1 + 2r cos $+r2  
1 - 2r cos $ -t r2 1 -1 4 (+-A) sin2$log ( 

sin$-&rr2(1-c0~2$) (5.3) 

FIGURE 2. Model for flow in the outer regions when €2, is large. Shaded regions denote 
boundary layers; unshaded regions have uniform vorticity. v, = - 0.25(WZ/Rw) sin $. 

and this gives as our flow velocity at  the edge of the core 

[5],=1 = i j l  = (&r) (n sin2 $ - 2 sin + - sin 2+ log tan &$). (5.4) 
The boundary-layer equation for the layer adjacent to the pipe wall is 

We now linearize (5 .5)  in a manner analogous to that employed by Moore (1963) in 
his study of the stress-induced boundary layer at  the surface of a spherical 
bubble; the subsequent andysis follows closely that of Harper & Moore (1968), 
who studied the flow field associated with a spherical drop. Moore's linearization 
is, however, formally justified in the limit Rs+co, whereas that employed here 
is not. For reasons to be discussed later we assume that the velocity in the 
boundary layer is a small perturbation of the velocity in the core and write 

v = v+v,, u = u+u,, (5.6) 

where a suffix p denotes a perturbation quantity. Substituting (5.6) into (5.5) 
and neglecting quadratic terms in the perturbation quantities, we have, as our 
boundary-layer equation, 

noting that 5 = g1 and ?i = (1 - r)dvl/d$ to a boundary-layer approximation. 
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We now transform (5.7) into the diffusion equation by the use of the following 
transformations : 

( 5 . 8 )  
I 

x = -5-1 p E l d $ ,  

y = ( - cRs)t{-lv,( 1 - Y), 

(5.9) 

y = 5-2E,vp. 

Equation (5.7) becomes aylax = a z y l a y 2 ,  

with the conditions Y+O (Y-.W), 
y (x ,  0 )  = {-2(vL - GI) zl, (5.10) 

and some initial condition y(0, y), which will be discussed later. w h  is the non- 
dimensional velocity of the wall of the circle and is equal to - 0.25 sin $. The 
solution of (5.9) subject to the above conditions is given in Carslaw & Jaeger 
(1959): 

y(0, y’) (e-(ar-~’)~l4z - e-(g+9’)2/k) dy’ 

(x - y2/4p2, 0 )  e-p2 dp. (5.11) 

The boundary-layer equation for the layer along the line of symmetry $ = 0,n 

(5.12) 

where s is the non-dimensional co-ordinate along the line $ = 0 and n, and 
s = 0 is 9 = 0, and n is the non-dimensional co-ordinate normal to it. u and B are 
the non-dimensional velocities associated with the new co-ordinates. Thus u is in 
the direction of s increasing and v is in the direction of n increasing. El is the 
velocity of the flow in the core a t  n = 0 and is equal to (l /r)l  ax,/a$l evaluated at  
I)-= Oorn. 

Using (5.6) and linearizing as before, we have as our linearized boundary-layer 
equation 

(5.13) 

Employing the following transformations : 

Y = - ( -cRs)B [-%,n,) 

(5.14) 

we again arrive a t  the diffusion equation 

arlax = a2rpy2. (5.15) 

The perturbation vorticity to a boundary-layer approximation is 
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and this also satisfies the diffusion equation 

aopx = a 2 0 / a y 2 .  (5.17) 

To ensure zero vorticity along @ = 0,n- we therefore solve (5.17) subject to the 

(5.18) 
boundary conditions 

0 + 0  as Y+m, 
0 = (-L&)--4 on Y = 0, 

and some initial condition 0 (0, Y ) .  
As before we find 

Let a suffix e denote the end of each boundary layer. Thus x, is equivalent to 
$ = 0 for the layer along the circle wall, and X ,  is equivalent to $ = n-, r = 1 for 
the layer along the line of symmetry. We now assume that the velocity profiles 
at  the end of each layer are convected around the corners without change, an 
assumption which will be discussed later. Therefore, noting that y = Y at the 

(5.21) 

Because of (5.21), (5.11) and (5.20) are a pair of linked integral equations for the 
velocity perturbation in the boundary layer. Looking at the point x,, and 
substituting (5.20) into (5.11), using (5.21), and performing one integration, we 
arrive at  the following integral equation for the profile of y at x,: 

where a = ( ”  -+- y)(4xexe)’ ,  ~ P =  (x-x)(-). 4xex,  t (5.23) 
ax, 4xe xe+xe  4 x ,  4xe x,+x, 

The unknown constant 6 appears in the known second integral on the right-hand 
side of (5.22), and is found when we apply the condition y-f 0 as y-fco. 

The equation (5.22) was solved numerically for y(x,, y) by iteration. A more 
convenient form for the numerical evaluation of the second integral on the right- 
hand side of (5.22) was found to be 

(5.24) 
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and when this was evaluated by Simpson’s rule using a step length of 77r/200, and 
the other integral evaluated by Simpson’s rule using a step length of 0.1, the 
profile was given correct to three significant figures after convergence of the 
iterations. Infinity was taken to be 10 and this was found more than adequate. 

Applying the condition that y -+ 0 when y -+ co, 5 was found to be - 0.56. 
We may now attempt to justify the linearization. If we plot -vk and -El 

against $ as in figure 3, we see that their difference, which is a measure of the 
perturbation velocity, is quite small compared with - El for a significant part of 
the boundary layer. Of course, the perturbation cannot be small near + = 0 
(or n-) as El N $log +$ when $ is small, but we hope this will not alter the result 
significantly. 

0 

9 
FIGURE 3. Comparison of the velocity distribution a t  the edge of the core flows vl: 

with the distribution on the wall of the circle v;. 

To return to the assumption contained in (5.21)) we find, on closer analysis, 
that X o  is, for the most part, dominated by an irrotational term in each corner. 
Further, we find that, if the linearization is still valid, then the perturbation 
vorticity is convected around each corner on the streamlines of this motion, and 
this leads directly to the conclusion (5.21). This analysis is given in detail in 
Lyne (1970)) and we may remark that it follows closely that of Harper (1!363) 
and Moore (1963). In  addition Stewartson (1957) described the same type of 
phenomenon in connexion with the boundary layer on a rotating sphere. 

6. Results 
As can be seen from the solutions to xo, both for small and large values of R,, 

the flow in the interior is steady in the limit /3+ 0, and in the opposite sense to 
that predicted for a steady pressure gradient along the pipe. (See Dean 1927, 
1928; Barua 1963; and McConalogue & Srivastava 1968.) That is the motion 
along the line of symmetry $ = 0, n- is from the outer side of the pipe to the 
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inner. The reason seems to be that ‘centrifuging’ generates motion which is 
entirely confined to the Stokes layer. The fluid is driven along the wall from the 
outer side of the bend to the inner, under the action of the pressure gradient 
which, in the Stokes layer, is no longer balanced by the centrifugal force asso- 
ciated with flow along the pipe; it returns centrifugally within, and at the edge of, 
the Stokes layer only, and in so doing ‘drags’ the fluid in the interior around in 
the manner found. A sket,ch of the mean first-order streamlines in figure 4 makes 
this clear. It is interesting to see to what extent the picture, given by the theory 
developed above, is complete. 

Inside Outside 

FIGURE 4. Sketch of the streamlines in the plane of the cross-section for small /3. 

Taking the first-order solution for flow in the interior xo, and plotting its 
vorticity at $ = in for different values of R,, we arrive at  the situation in figure 5.  
The expression used for the non-dimensional vorticity 5 at $ = &r with R, small is 

The error involved is O(R:), because V2x03 (like V2xol) is identically zero on 
$ = &r. As can be seen from both figure 5 and $4, the O(R,2) term in (6.1) is 
considerably smaller than the O(1) term for values of R, up to 100. Therefore this 
expression should be a good asymptotic representation of 5 for these values of R,, 
and, if we bear in mind that the error is O(R:), the vorticity profile for R, = 200 
is perhaps not without significance. It shows clearly the development of a core of 
uniform vorticity as R, increases, but perhaps indicates that the magnitude of the 
vorticitywhen R,+m has been over-estimated because of our crude linearization. 

However, it  is worth observing that if the wall of the circle in $ 5 moves with a 
speed Zl, this being the velocity at the semicircular edge of the core flow, then no 
boundary layer is formed a t  the wall of the circle, and any effect due to the 
vorticity discontinuity along the line of symmetry is O(R;t) which is neglected. 
If 6 is now chosen so that the average velocity at  the circle wall is the same as for 
the problem under consideration, i.e. 

= 1: In (n sin2 $h - 2 sin@ - sin 2$1og tan $$)d$, (6.2) n o  
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then we find 5 = - 0.535. This figure is reassuringly close to that predicted both 
by the linearized boundary-layer theory developed in 5 5 for large R, and by the 
shape of the low R, vorticity curve for R, = 200. 

In addition Kuwahara & Imai (1 969) have recently computed the solution to 
the full equations for xo using values of R, up to 2048. They find that at the latter 
value the vorticity is 5 = - 0.54, and this gives considerable support both to our 
value of - 0.56 as Rs+ co and to our confidence in the linearization of $ 5 .  

- 1.0 -0.56 

c 

r 

0.0 
I 

FIGURE 5. Vorticity profiles when $ = in for different values of R,. 

It is of interest to locate the precise position of that stagnation point which 
represents the vortex centre (rc, $J of the flow in the interior. Solving for small 
R, and neglecting terms of O(p)  we find 

(6.3) I r, = 3 4 3 - ~ 3 R ~ / 1 , 6 5 8 , 8 8 0 + O ( R , 4 ) ,  

$c = 8. - 43 Rs/864 -I- O(R:). 

On the other hand, as R,+m the centre tends to (0-48, in). Thus thevortex centre 
moves in the direction of the fluid motion at  the semicircular edge of the vortex, 
before inertial effects become dominant and return the centre to the line $ == in. 
Similar results have been obtained by Burggraf (1966) and Kuwahara & Imai 
(1969). 

If we had allowed P in this theory to take any value, then P+m would corre- 
spond to the steady state with concomitant positive centrifuging, i.e. the flow 
along the line $ = 0,  n would be from the inside of the bend to the outside. 
However, for p > 0.1 1 but small enough to be within the range of this theory, the 
mean flow within the outer region given by the first three terms of the exparision 
(3.6) to O(PZ) and R, equal to zero, is wholly from the inside to  the outside on the 
line $ = in. This shows a tendency towards the solution for the steady problem. 
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7. Experimental observations 
The apparatus consisted of a length of clear plastic tubing bent into one loop 

of a circular spiral of small pitch and filled with water. A pump, which consisted 
of a large glass syringe, was attached to one end, and this was driven approxi- 
mately in simple harmonic motion by an eccentric mounted on the shaft of an 
electric motor; at  the other end of the pipe there was a reservoir. The apparatus 
is shown by figure 6 in plan view. 

To motor 
f-- 

To reservoir 
___3. 

B *  

FICUFCE 6. The experimental appa.ratus. 

Adhesive tape 

FIGURE 7. Cross-section of pipe after injection of dye. 

For an indicator dye a 5 yo aqueous solution of amaranth was used, its density 
being adjusted to that of water by adding a sufficient quantity of alcohol. A 
streak of dye was injected at A with the apparatus a t  rest, the streak of dye 
running from the bottom of the pipe to the top. This was achieved by puncture 
of the wall of the pipe with the needle of a syringe, which was filled with dye, 
followed by the drawing out of a streak; after the needle was removed the hole 
was patched with adhesive tape. A section at  A is shown in figure 7 after the 
injection of dye. 
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The apparatus was then set in motion, and the movement of the streak 
observed. The results are discussed later. 

The dimensions of the apparatus were as follows: radius of the pipe 
a = 0.75cm; radius of the spiral R = 10.0cm; angular frequency of pump 
w !z 4n rad s-l; amplitude of pump = 0.5cm; kinematic viscosity of water 
= 0.01 em2 s-l. Thus the basic parameters had the following values : 

S = 0.075, c = 0.18, R, 11 24, = 0.05. 

From the magnitude of these parameters we should have expected the flow to 
look like the situation in figure 4. In  fact, only the motion in the interior was 
observed clearly, but this was not surprising as the Stokes layer was very small. 

The photographs in figure 8 (plate 1) were taken a t  intervals of approximately 
3 see, the camera being positioned at  B and above the plane in which the pipe 
was coiled. It viewed the test section at an angle of approximately 4 5 O ,  and so the 
streak of dye was inclined at  a similar angle in order to obtain a clearer picture. 

As can be seen, in the centre of the pipe the streak of dye was observed to move 
towards the inside of the bend; at  the top and bottom, on the other hand, it moved 
towards the outside, thus agreeing with the predictions for flow in the outer region. 

It should be mentioned that what is observed is the path of each particle of 
fluid, and so we need to consider the mass-transport velocity of particles in an 
oscillatory flow. In  the present case, the mass-transport velocity field is confined 
to the plane of the secondary flow, and in the interior the particle paths are found 
to coincide with the streamlines of the flow to first order in p. In  the Stokes layer, 
however, this is no longer the case, and it is found theoretically that, in addition 
to the first-order secondary flow calculated in this paper, there is a contribu- 
tion to the particle velocity of the same order which is parallel to the plane in 
which the pipe is coiled and whose mean is directed from the inside to the 
outside of the curve in which the pipe is bent. This contribution decays to zero 
exponentially at  the edge of the Stokes layer, and so its effect is not observed. 
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